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MESOPOTAMIAN MATHEMATICS

Jens Høyrup

The term “Mesopotamian mathematics” refers to the mathematical knowl-
edge and the mathematically based practices of the cuneiform tradition from
the mid-fourth millennium bce until its disappearance around the begin-
ning of the Common Era.1 All dates in the following should thus be under-
stood to be bce (and according to the “middle chronology”) when ce is not
indicated explicitly.
The reference to the writing system is not peripheral. Throughout

its history, the development and orientation of Mesopotamian mathe-
matics was intimately bound up with written administration and the
scribal craft, and all documentation we possess derives from docu-
ments written on clay tablets (here, as mostly, the mathematical
regularities of buildings and other artifacts give little conclusive infor-
mation about the kind of mathematical knowledge which was involved
in their production).
Attentive reading of the written sources reveals, however, that the written

tradition must have received important inspiration from traditions carried
by non-scribal (and, at least until the advent of Aramaic alphabetic literacy
in the first millennium, scarcely literate) specialists: surveyors, master-
builders, traders, and/or similar groups. In all likelihood, these “lay” practi-
tioners also borrowed from the literate tradition, but this is more difficult to
document.

1 The changing approach to the field and the increasing awareness that Mesopotamian mathematics
has a history is described in Jens Høyrup, “Changing Trends in the Historiography ofMesopotamian
Mathematics: An Insider’s View,” History of Science 34 (1996), 1–32. An exhaustive annotated
bibliography until 1982 is Jöran Friberg, “A Survey of Publications on Sumero-Akkadian
Mathematics, Metrology and Related Matters (1854–1982),” Department of Mathematics, Chalmers
University of Technology and the University of Göteborg 17 (1982). A very detailed account of
mathematical knowledge and techniques is Jöran Friberg, “Mathematik,” in Reallexikon der
Assyriologie und Vorderasiatischen Archäologie, vol. 7 (Berlin and New York: de Gruyter, 1990), pp.
531–85. Eleanor Robson has published Mathematics in Ancient Iraq: A Social History (Princeton, NJ
and Oxford: Princeton University Press, 2008).
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LONG-TERM DEVELOPMENTS

So-called protoliterate writing was created in Southern Mesopotamia (the
later “Sumerian” area) after the mid-fourth millennium, in connection with
the earliest formation of a bureaucratic state (understood as a social system
characterized by an at least three-tiered system of control and by extensive
specialization of social roles) headed by a temple institution. The root of the
invention was an accounting system based on clay tokens (probably standing
for various measures of grain, heads of livestock, etc.) that had been used in
the Near East since the eighth millennium, and various transformations and
extensions of this system introduced in response to the needs created by
increasing social complexity.2

In the protoliterate period, metrological notations were created that depicted
the traditional tokens. A notation for an “almost abstract” number may have
been created by adaptation of the system of grain or hollowmeasures to existing
spoken numbers, with basic signs for 1, 10, 60, and 3,600, and composite signs
for 60⋅10 and 3,600⋅10. Sub-unit extensions of all metrologies, an administrative
calendar, and a combinedmetrology for length and areameasurement replacing
older “natural” (ploughing or irrigation) measures may also be new creations.3

Mathematics was fully integrated with its bureaucratic applications –
school texts are “model documents,” distinguishable from real administra-
tive documents only by lacking the name of a responsible official and by the
prominence of nice numbers. But the integration was mutual: bureaucratic
procedures, centered on accounting, were mathematically planned, for
instance around the new area metrology and the calendar. The cognitive
integration corresponds to social integration – the literate and numerate
class seems to coincide with the stratum of temple managers.
The third millennium continued the mutual fecundation of administrative

procedures and the development of mathematics (in a process whose details
we are unable to follow). The reach of accounting systems increased gradually,
and metrologies were modified intentionally so as to facilitate managerial
planning and accounting. At the same time, there is a trend toward “sexa-
gesimalization,” expanding use of the metrological step factor 60 – see below,
“Numbers, Number Systems, Tables, and their Computational Use.”

2 On the token system and its development, see for instance Denise Schmandt-Besserat, Before
Writing. I. From Counting to Cuneiform (Austin, TX: University of Texas Press, 1992).

3 A broad summary of fourth- and third-millennium mathematical techniques (including the details
of metrologies) is Hans J. Nissen, Peter Damerow, and Robert Englund, Archaic Bookkeeping:
Writing and Techniques of Economic Administration in the Ancient Near East (Chicago, IL: Chicago
University Press, 1993). The interplay between state formation and the shaping of mathematical
techniques and thought is analyzed in Jens Høyrup, In Measure, Number, and Weight. Studies in
Mathematics and Culture (New York: State University of New York Press, 1994), pp. 52–7, 68–74.
Pages 45–87 of the same volumemay serve as a general reference (with extensive bibliography) for the
links between statal bureaucracy, scribal craft and culture, and the transformations of mathematics
until the mid-second millennium.
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Around 2600, however, when a distinct scribal profession emerged,
numeracy and literacy outgrew the full cognitive subservience to accounting
and management. For the first time, writing served to record literary texts
(proverbs, hymns, and epics); and we find the first instances of “pure” or
(better) “supra-utilitarian”mathematics –mathematics starting from applic-
able mathematics but going beyond its usual limits. It seems as if the new
class of professional intellectuals set out to test the potentialities of the
professional tools – the absolute favorite problem was the division of very
large round numbers by divisors that were more difficult than those handled
in normal practice.4

The language of the protoliterate texts is unidentified, whereas the lan-
guage of the third-millennium southern city states was certainly Sumerian.
Toward 2300, however, an Akkadian-speaking dynasty conquered the whole
Sumerian region, and soon, for a while, the entire Syro-Iraqian area
(Akkadian is a Semitic language, later split into the Babylonian and
Assyrian dialects; names show it to have been present in the area at least
since 2600). Sumerian remained the administrative language (and hence
the language of scribal education), but new problem types suggest
inspiration from a lay, possibly non-Sumerian surveyors’ tradition –
area computations that are very tedious unless one knows that
☐ðR–rÞ ¼ ☐ðRÞ þ ☐ðrÞ–2⊏⊐ðR; rÞ ð⊏⊐ and ☐ stand for rectangle
and square, respectively), and the bisection of a trapezium by means of
a parallel transversal.
The twenty-first century is of particular importance. After a breakdown of

the “Old Akkadian” empire, a new territorial state (“neo-Sumerian” or
“Third Dynasty of Ur”) established itself in 2112. A military reform under
king Šulgi in 2074was followed immediately by an administrative reform, in
which scribal overseers were made accountable for the outcome of every 1/60
of a working day of the labor force allotted to them according to fixed norms;
at least in the South, the majority of the working population was apparently
subjected to this regime, probably the most meticulous large-scale bureau-
cracy that ever existed.
Several mathematical tools were apparently developed in connection with

the implementation of the reform (all evidence is indirect): a new book-
keeping system – not double-entry book-keeping, but provided with similar
built-in controls; a place-value system with base 60 used in intermediate
calculations; and the various mathematical and technical tables needed in
order to make the place-value system useful (described below, p. 64).

4 Two specimens with divisor 7 are analyzed in Jens Høyrup, “Investigations of an Early Sumerian
Division Problem, c. 2500 bc,”Historia Mathematica 9 (1982), 19–36. A similar problem with divisor
33 from Ebla in Syria (whose mathematics was borrowed from Sumer) is analyzed in Jöran Friberg,
“The Early Roots of Babylonian Mathematics. III: Three Remarkable Texts from Ancient Ebla,”
Vicino Oriente 6 (1986), 3–25.
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No space seems to have been left to autonomous interest in mathematics;
once again, the only mathematical school texts we know are “model
documents.”
For several reasons (among which were probably the exorbitant costs of

the administration) even the Ur-III state collapsed around 2000.
A number of smaller states arose in the beginning of the succeeding “Old
Babylonian” period (2000 to 1600), all to be conquered by Hammurapi
around 1760. Without being a genuine market economy, the new social
system left much space to individualism, on the socio-economic as well as
the ideological level. In the domain of scribal culture, this individualism
expressed itself in the ideal of “humanism” (sic – n a m-l ú-u l ù, Sumerian
for “being human”): scribal virtuosity beyond what was needed in practice.
This involved the ability to read and speak Sumerian, now a dead language
known only by scribes, as well as supra-utilitarian mathematical
competence.
The vast majority ofMesopotamianmathematical texts come from theOld

Babylonian school (teachers’ texts or copies from these, except for the training
of simple calculation and copies of tables not student production as all third-
millennium specimens). They are in Akkadian (notwithstanding sometimes
heavy use of Sumerian word signs), another indication that the whole genre of
“humanist”mathematics had no Ur-III antecedents. Its central discipline was
a geometrically based second-degree “algebra,” probably inspired from
a collection of geometrical riddles circulating among lay, Akkadian-speaking
surveyors (to find the side of a square from [the sum of] “the side and the area”
or from “all four sides and the area,” etc.), but transformed into a genuine
mathematical discipline and a general analytical technique.
A first classification divides the text corpus into table texts and problem

texts. The second category can be subdivided in different ways: into (1)
theme texts, whose problems have a common theme; (2) anthology texts
which have no common theme; and (3) single-problem texts. Alternatively it
can be subdivided into (i) procedure texts that teach how to obtain
a solution; and (ii) catalog texts listing mere problem statements (most
catalogs are theme texts). It is noteworthy that anthology texts, even if
mixing different kinds of mathematics, do not mix mathematics with
other topics (not even sacred numerology); Old Babylonian mathematics
was clearly a cognitively autonomous field.
Some of the texts come from excavations, but most from illegal diggings.5

For these, provenience and dating must be derived from paleography,
orthography, and characteristic differences in terminology. In a region

5 The basic text editions are O. Neugebauer, Mathematische Keilschrift-Texte, 3 vols. (Berlin: Julius
Springer, 1935–7) = MKT; O. Neugebauer and A. Sachs, Mathematical Cuneiform Texts (New
Haven, CT: American Oriental Society, 1945) = MCT; and E. M. Bruins and M. Rutten, Textes
mathématiques de Suse (Paris: Paul Geuthner, 1961) = TMS. MKT and MCT are very careful
editions, TMS alas not. Only TMS contains archaeologically excavated texts. Single texts with
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encompassing the former Sumerian South, the Center (Babylon and surround-
ings) the Center-to-North-East (Ešnunna), and even the eastern periphery
(Iranian Susa), the global character of Old Babylonian mathematics is largely
the same (from the Assyrian North, never dominated by Ur III or Babylonia,
no mathematical texts but only accounts are known). Close attention to
language and procedures reveals, however: that the adoption of lay material
has taken place simultaneously in Ešnunna and in the South; that pre- and
post-Šulgi-reform Sumerian mathematics coexisted in eighteenth-century
Ešnunna without being fully merged; that a number of schools tried to develop
a strict terminological canon but did not agree in their choices; and that all texts
that try to explain procedures abstractly and not only through paradigmatic
numerical examples are close to the lay oral tradition – the school seems to have
given up abstract formulation as pedagogically inefficient.6

Inner weakening followed by aHittite raid put an end to theOld Babylonian
state in 1600. A warrior tribe (the Kassites) subdued the Babylonian area, for the
first time rejecting that managerial-functional legitimization of the state which,
irrespective of suppressive realities, had survived since the protoliterate phase and
made mathematical-administrative activity an important ingredient of scribal
professional pride. The school institution disappeared, and scribes were trained
henceforth as apprectices. Together, these events had the effect thatmathematics
disappears almost completely from the archaeological horizon for a millennium
or more (one Kasssite problem text and one table text have been found; the
problem text offering a sham solution to a very difficult problem seems to derive
from the style of the Old Babylonian northern periphery); metrologies were
modified in a way that would fit practical computation in a mathematically less
sophisticated environment (e.g. making use of normalized seed measures in area
mensuration; though no longer an object of pride, mathematical administration
did not disappear).
Around the “Neo-Babylonian”mid-first millennium, mathematical texts

turn up again, for instance concerned with area mensuration, the conversion
between various seed measures, and some supra-utilitarian problems of the
kind that had once inspired Old Babylonian “algebra.” This and other
features may reflect renewed interaction between the scribal and the lay
traditions, which so far cannot be traced more precisely.

known provenience have been published by Taha Baqir, Jöran Friberg, and others, many in the
journal Sumer.

6 The analysis is presented in Jens Høyrup, “The Finer Structure of the Old Babylonian Mathematical
Corpus. Elements of Classification, with some Results,” in JoachimMarzahn andHans Neumann (eds.),
Assyriologica et Semitica. Festschrift für Joachim Oelsner anläßlich seines 65. Geburtstages am 18. Februar 1997
(Münster: Ugarit Verlag, 2000), pp. 117–77. The idea that traces of pre-Šulgi mathematics might be
present in texts from the northern periphery was first proposed by Eleanor Robson in her dissertation
from 1995, now published asMesopotamianMathematics 2100–1600 bc. Technical Constants in Bureaucracy
and Education (Oxford: Clarendon Press, 1999). The precise chronology for the adoption of various kinds
of lay material, as far as it can be known, is investigated in Jens Høyrup, “AHypothetical History of Old
Babylonian Mathematics: Places, Passages, Stages, Development,” Gan

˙
ita Bhārati 34 (2012), 1–23.
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One Neo-Babylonian text combines the sacred numbers of the gods with
a metrological table. This breakdown of cognitive autonomy corresponds to
what the texts tell us about their owners and producers (such information is
absent from the Old Babylonian tablets); they identify themselves as “exor-
cists” or “omen priests” (another reason to believe that their practical
geometry was borrowed from lay surveyors).
A final development took place in the Seleucid era (311 onwards).

Even this phase is only documented by a few texts: some multi-place
tables of reciprocals possibly connected to astronomical computation,
though of no direct technical relevance; one theme text; an anthology
text focusing on practical geometry; and an unfocused anthology text.
The unfocused anthology text shows some continuity with the Old
Babylonian tradition (including its second-degree “algebra”) but also
fresh developments (e.g., formulas for

P
2n and

P
n2). The theme

text contains “algebraic” problems about rectangles and their diagonals,
of which only one type is known from the earlier record, but where even
this is solved in a different way. It seems to be a list of new problem
types or procedures, either borrowed from elsewhere or freshly invented.
The Seleucid texts make heavy use of Sumerian word signs, but in a way
that sometimes directly contradicts earlier uses. To some extent at least
they represent a new translation into Sumerian of a tradition that must
have been transmitted outside an erudite scribal environment.
In connection with the creation of a planetary astronomy based on

arithmetical schemes, the Neo-Babylonian period (in particular the
Seleucid phase) developed a set of highly sophisticated numerical techni-
ques; these are dealt with in chapter 4 by John Steele, in this volume.

NUMBERS, NUMBER SYSTEMS, TABLES, AND THEIR
COMPUTATIONAL USE

The original number system was based on specific signs for 1, 10, 60, 600,
3,600, and 36,000, multiples of which were produced by repetition in fixed
patterns ( ⋅ , ⋅⋅ , ⋅⋅⋅ , :: , ⋅⋅⋅⋅⋅ , etc.). In the third millennium, adjunction of the
sign g a l, “great,” allowed upwards extension of the system by a factor 60,
whereas the sign gín, borrowed fromweight metrology, was used in the sense
of 1/60 (the same tricks were used to expand the reach of metrological
sequences). From the Old Akkadian epoch onward, calculators can be
seen to have experimented with the system, thus approaching the place-
value principle – but all the relevant texts commit errors, thus showing that
no place-value system was yet available.7

7 SeeMarvin A. Powell, “The Antecedents of Old Babylonian Place Notation and the Early History of
Babylonian Mathematics,” Historia Mathematica 3 (1976), 417–39.
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The system seems to have been created in the wake of the Ur-III admin-
istrative reform. It employed the traditional sign for 1 for any integer power
60n, and the sign for 10 for any 10⋅60n – still with repetitions in fixed patterns
to express 2, 3, . . .,9, and 20, 30, . . ., 50. It was a floating-point system, with
no indication of absolute order of magnitude, as the slide rule engineers
would use until some decades ago. Nor were “intermediate zeroes”
indicated. For both reasons, the notation could only be used for rough
work – final results had to be inserted in the documents in the traditional,
unambiguous notation.
The place-value notation did not facilitate additions and subtractions –

these were performed on a calculating board;8 the reason it was introduced
was the importance of multiplications in Ur-III planning and accounting. If,
e.g., the labor needed to produce a wall of given dimensions of bricks of
a given type was to be found, one (“metrological”) table would translate
a thickness measured in cubits and fingers into the standard length unit (a
“rod” ≈ 6m), after which the volume of the wall could be found in standard
units. A “technical” table of “constant factors” would tell the number of
bricks of the type in question per unit volume, another the number of bricks
produced by a worker per day, a third the number carried a given distance
per man-day, etc. The total consumption of labor could then be found by
means of multiplications and divisions.9

Beyond metrological conversion tables and tables of technical constants,
the system depended on the availability of multiplication tables and of tables
of reciprocals (to be learned by heart in the scribe school) – the latter because
division by nwas performed as a multiplication by 1/n. The important step in
the invention of the place-value system was thus not the inception of the
idea, which had been in the air for centuries; it will have been the govern-
ment decision to have it spread in teaching and to produce (mass-produce!)
the tables needed for its implementation.
Once introduced, the place-value system could survive in less bureau-

cratic settings. It became the standard system of Old Babylonian mathema-
tical texts (only occasionally will the units of “real” life turn up in statements
or final results) and of late Babylonian mathematical astronomy. It is quite
uncertain whether the Indian decimal place-value system for integers
depends on it, but it is undisputed that it was taken over in the minute-
second fractions of Greek and later astronomy, whence it inspired the
introduction of decimal fractions.
It may seem a drawback of the Babylonian division method that it only

works for “regular” divisors of the form 2p⋅3q⋅5r (p, q, and r positive, negative,

8 See Jens Høyrup, “A Note on Old Babylonian Computational Techniques,” Historia Mathematica
29 (2002), 193–98, and Christine Proust, “La multiplication babylonienne: la part non écrite du
calcul,” Revue d’Histoire des Mathématiques 6 (2000), 293–303.

9 The most thorough treatment to date of the technical factors and their use as reflected in mathe-
matical texts is Robson, Mesopotamian Mathematics 2100–1600 BC.
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or 0). In practice this was no trouble, firstly because all metrological step
factors were regular, and secondly because the margin on technical factors
was always large enough to allow representation by a simple regular number.
Factors that might turn up as divisors were always chosen thus.
Beyond the tables already mentioned, other arithmetical tables occur: n2

(with inversions as √N, whereN itself is square), and the inversions of n3 and
n2⋅(n+1). Tables of squares (viz square areas expressed in metrological units)
go back to before the mid-third millennium and thus antedate the place-
value system by ca. 500 years.

GEOMETRY

Very few third-millennium texts reveal the actual mathematical knowledge
and procedures that went into their results. The post-Old-Babylonian texts
at our disposal are also too few to suggest any global picture. For these
reasons, this and the following two sections deal primarily with the mathe-
matics and the mathematical thought of the Old Babylonian period.
In geometry, no concept of the quantifiable angle existed. In order to find

the area of a rectangle the Babylonians would multiply the length with the
width – as mentioned, the area metrology had been adapted to this already in
the fourth millennium. When dealing with near-rectangular quadrangles
they would choose as length and width the legs of an approximately right
angle (as opposed, we may say, to a “wrong” angle). If opposite sides were
slightly different, average length would be multiplied by average width (the
“surveyors’ formula”; also since the fourth millennium). This would always
yield too large results, but with one known exception it was only used in
practical mensuration when the error was negligible (when used as a mere
pretext for supra-utilitarian problems in the Old Babylonian school, the
formula might be employed in cases where it is blatantly absurd).
The area of approximately right triangles was found as the product of the

bisected width with “the length” – as opposed to “the long length,” i.e., the
hypotenuse. More complex shapes would be split up into quasi-rectangles
and quasi-right triangles (this is seen in Ur-III field plans). A Seleucid text
computes the height of an equilateral trapezium; a text fromOld Babylonian
Susa suggests that the same could be done in earlier times when regular
polygons were investigated.
The absence of the notion of the quantifiable angle did not prevent the

understanding of similarity relations. It was also routinely used that the areas
of similar figures are to each other as the squares on the linear dimensions.

It was known that the square on the diagonal of a rectangle augmented by
the doubled area equals the square on the sum of the sides, whereas the
squared diagonal minus the doubled area equals the square on their differ-
ence – and, probably as a sequel, that the squared diagonal itself equals the
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sum of the squared sides. The latter, of course, is what we know as the
“Pythagorean theorem.”
The fundamental circle parameter was the perimeter p – the area was

found as 1/12p
2, and the diameter as 1/3p. In one text group from the northern

region (in general close to the lay tradition, where both the separate treat-
ment of the semicircle and the very same formula turn up in later ages) the
area of the semicircle is found as 1/4 of the product of diameter and arc.
In volume metrology, the area units were thought of as provided with

a “standard thickness” of 1 cubit. In order to determine a prismatic or
cylindrical volume, the calculator would first find the base (with this implicit
thickness) and then “raise it to,” i.e, multiply it with, the height. This
operation was so important that “raising” became the standard term for
any multiplication which was based on similar considerations of proportion-
ality (only concrete repetition and the laying-out of rectangular areas employ
other terms); all multiplications with factors taken from metrological tables
or tables of technical constants were thus “raisings.”

The volume of a truncated cone was calculated as the height times the
mid-cross-section, that is, as that of a cylinder with the average diameter.
In one case, the volume of a truncated pyramid is determined as the average
base raised to the height – in another, the correct value is found, whether
from a correct formula or not is unclear (a correct formula can be derived
from relatively simple intuitive arguments).
The simple area and volume formulas are without doubt based on such

intuitive insights. The restricted use of the “surveyors’ formula” indicates
that it was understood to be only an approximation, but nothing suggests
any precise idea as to the importance of the error; probably the Babylonians
would see no difference between this kind of approximation and the treat-
ment of an inevitably uneven terrain as if it were a perfect plane.
Formal demonstration seems to be absent from Babylonian geometry.

There was a certain interest in striking geometrical configurations – e.g.,
systems of concentric squares. Reflections on a concentric two-square system
and on the appurtenant “average square” may have led to the discovery of
how to bisect a trapezium by a parallel transversal. Apart from this, the only
important kind of supra-utilitarian geometry was the area technique which
has become known as “Babylonian algebra.”

“ALGEBRA” AND OTHER “PURE” PURSUITS

When it was discovered in the late 1920s that the sequence of numbers in
certain texts corresponds to the solution of second-degree equations, much
of the technical terminology was still uninterpreted. It was assumed – and
generally accepted for 60 years – that the underlying conceptualizations were
arithmetical; that the operations involved were therefore numerical
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additions, subtractions, multiplications, and extractions of roots; and that
the persistent references to lengths, widths, and areas were nothing but
metaphors for numerical unknowns and their products.10

Close attention to the vocabulary and the organization of the texts
demonstrates, however, that two presumed additions are kept strictly
apart; that there are two different subtractive operations; that two different
“halves” are distinguished; and that “multiplications” are four in number.
All of this concerns concepts – several of the concepts are covered by two or
more synonymous terms. This makes no sense in the arithmetical interpreta-
tion, but everything becomes obvious if we take the words of the texts
(lengths, widths, squares, areas) seriously. Babylonian “algebra” turns out
to be a cut-and-paste technique which manipulates measurable line seg-
ments and areas in analytic processes which, in their numerical steps,
correspond to the procedures of our equation algebra.11 As an example we
may look at the simplest of all mixed second-degree problems: the sum of
a square area and the side is 45´ (i.e., 45⋅1/60 = 3/4). The sequence of numerical
steps in the solution (with added indications of absolute magnitude, ´
indicating minutes or sixtieths, ´´ seconds) is as follows: 45´ –– 1 –– 1 ––
30´ (= 1/2) –– 30´ –– 15´ (=

1/4) –– 45´ –– 1 –– 1 –– 30´ –– 1 –– 30´.
12What goes

on can be followed in Figure 3.1. At first the side is represented by

1

s

Figure 3.1. The procedure of BM 13901 nº 1.

10 The discovery and the development of interpretations is analyzed in Høyrup, “Changing Trends,”
pp. 1–10.

11 See Jens Høyrup, Lengths,Widths, Surfaces: A Portrait of Old Babylonian Algebra and Its Kin (Studies
and Sources in the History of Mathematics and Physical Sciences; New York: Springer, 2002).

12 BM 13901 n° 1, in MKT III, 1.
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a rectangular area ⊏⊐(1,s), which is glued to the square ☐(s). Its length 1 is
bisected, and the outer 1/2 is moved so as to span with the 1/2 that remains in
place a quadratic complement with the area 1/4. This is joined to the
gnomonic area 3/4 consisting of the square and the bisected rectangle.
The resulting square has the area 1, and thus also the side 1. The 1/2 that
was moved is detached from this 1, and 1/2 remains as the side of the original
square. The method, as we see, is analytical in the same sense as equation
algebra: the unknown side s is treated as if it were known, and the complex
relation subjected to manipulations until s appears in isolation.
This is one of those original surveyors’ riddles that were apparently

borrowed by the early Old Babylonian scribe school. In the scribe school
it was only one of many problems dealing with areas and segments. In non-
normalized cases, a proportional scaling of figures along one dimension was
used along with the cut-and-paste procedures.
Line segments and areas constituted the basis of the technique. They

could then be used to represent entities of other kinds: numbers from the
table of reciprocals, prices – or segments might represent areas or volumes.
The technique thus served as a general tool for finding unknown entities
involved in complex relationships. Even in this sense, it was similar to
equation algebra; its “basic representation” was not numerical, it is true,
but the segments and areas of this representation were as functionally abstract
as the numbers of equation algebra. The closest kin of Babylonian “algebra,”
however, is pre-Viète algebra: it was and remained a technique, and was never
associated with any algebraic theory about solvability conditions or the
classification of problems (classification was based on geometrical object
and not on algebraic type, as revealed by the organization of theme texts).
Nor was it used to solve “real-life” problems – no single practical problem
presenting itself to Babylonian calculators was of the second degree.
The only “practical” purpose of treating second-degree problems in school
was as a pretext for training calculation with sexagesimal numbers (much
as second-degree equation algebra has served in the schools of recent
centuries to train the manipulation of algebraic letter symbols).
Practical first-degree problems were solved without recourse to algebraic

techniques, often by variants of the “single false position” (also used in
homogeneous problems of the second and third degree). However, second-
degree “algebraic” systems might include a genuine first-degree equation, of
the type “the sum of the length and the width, from which 1/4 of the width is
detached, is 45”). A couple of texts discuss such equations and their trans-
formation, identifying most pedagogically the coefficients of length and
width and the contribution of each to the sum.
Some higher-degree problems (of biquadratic and similar types) were

solved by means of the algebraic technique. Mixed third-degree problems
also turn up – e.g., to find the side of a cubic excavation if the sum of the
volume and the base is known. Here the algebraic technique would forsake.
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Instead the calculator resorted to a combination of false-position considera-
tions and factorization or (in the case just mentioned) the table of n2⋅(n+1).
The trick is elegant but only works because a simple solution is known in
advance to exist (all school problems were constructed backwards from
known solutions).
The cubic problems are found in theme texts together with other “exca-

vation” problems of the first or the second degree, solved on their part with
algebraic methods. As regards their method, however, they are rather linked
with another kind of supra-utilitarian mathematics: investigations of the
properties of the regular numbers of the sexagesimal place value system.
In simple cases, it involved factorizations, continued multiplication pro-
ducts of simple factors, etc. The high point is a tabulation, not directly of
Pythagorean triplets a–b–c but of ???–z2–b–c, where ??? stands for one or
more missing columns, and z= c

a. All sets (b̅,c)̅ = (
t ’�t
2 ; t’þt

2 ) are listed for which
√2–1<t<5/9, t being the quotient between two regular integer numbers no
greater that 125, t’ = I

t :
13

The headings of the b- and c-columns speak about width and diagonal, and it
is thus certain that a geometric rectangle and its diagonal are involved. Apart
from that, the purpose of the text is obscure. As shown by Friberg, it is not the
result of a pure number-theoretical investigation. Instead, he proposes, it might
serve as a tool for finding an array of data that would permit somemathematical
problem (e.g. concerning right triangles) to be solvable. Unfortunately, Old
Babylonian problems always have very simple solutions, and consecutive pro-
blems often stick to the same solution; available evidence therefore speaks
against this proposal, but no more convincing alternative is at hand. The text
adds an important shade to our knowledge aboutwhat theBabylonians could do
but so far nothing to our understanding of why they would do it.

“MATHEMATICS” OR “COMPUTATION”? A GLOBAL
CHARACTERIZATION

In the Old Babylonian period, mathematics was a cognitively autonomous
subject, and it may therefore be considered legitimate to speak of it precisely as
mathematics, as done until now. In contrast, the term “mathematician”
appears nowhere. All we know about the authors of the mathematical texts
with some certainty (namely from the format of the texts) is that they will have
been teachers of future scribes (even though the sophisticated matters were

13 The tablet has been much discussed in the literature. Analysis and summary of earlier work is found
in Jöran Friberg, “Methods and Traditions of BabylonianMathematics. Plimpton 322, Pythagorean
Triples, and the Babylonian Triangle Parameter Equations,”Historia Mathematica 8 (1981), 277–318.
A new profound analysis is Eleanor Robson, “Neither Sherlock Holmes nor Babylon:
A Reassessment of Plimpton 322,” Historia Mathematica 28 (2001), 167–206.
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hardly tought to more than a minority of these). Much of what we find in the
texts is supra-utilitarian – but its ultimate legitimacy always rests on its link to
scribal activity. The scribe, however, when using mathematics, would always
be interested in finding a number, not, e.g., in geometrical regularities; artists
might have this interest, but with the exception of the abovementioned
concentric squares nothing permits us to link patterns with mathematically
interesting symmetries to the mathematical texts.
Strictly speaking, Old Babylonian (and, in general, Mesopotamian)

mathematics might therefore better be characterized as computation; instead
of “mathematicians” we should speak of “calculators” and “teachers of
calculation”; supra-utilitarian activities represent “pure calculation” rather
than “pure mathematics.” The ultimate interest in finding a number is of
course also a characteristic of most present-day applications of mathematics;
but it remains a feature which distinguishes both the Mesopotamian and the
contemporary calculating orientation from the investigation of the properties
of mathematical objects which (since the Greeks) constitutes our ideal type of
mathematics proper.
The italicized passage contains a veiled reference to another difference

between our ideal type and the Mesopotamian type: “investigation.”
In principle, theoretical mathematics has the problem as its core, and then sets
out to construct methods and a conceptual apparatus that permit its solution.
The same characteristic holds for applications ofmathematics (Mesopotamian as
well as contemporary), with the difference that the defining problem is no
mathematical problem. The core of Mesopotamian supra-utilitarian mathe-
matics, on the contrary, was always the method. When the mid-third-
millennium calculators were testing the potentialities of the professional tools,
these tools were the starting point, and the aim was to find out how far they
would reach. Similarly, the “scribal humanism” of the Old Babylonian period,
aiming at handling with virtuosity the tools and techniques of the scribe, would
be centered on these.
This does not preclude the practical existence of mathematical research, in

the form of a search for problems that could be treated by available techni-
ques and tricks. The difference between the surveyors’ riddles and the
algebraic discipline created in the school is indeed the outcome of this
kind of search. Nor did it preclude the invention of new techniques of scarce
practical utility; such inventions might be needed if new problem types were
to be transformed so as to be solvable – the “quadratic completion” used to
solve mixed quadratic problems is an example, already conceived in the lay
surveyors’ environment and then adopted into the early Old Babylonian
scribe school (which knew it as “the Akkadian [method]”). Once devised,
such techniques would themselves become part of the stock of professional
tools, and serve in the search for problem types that might now be solved – as
the quadratic completion became the basis for the whole fabulous develop-
ment of second-degree algebra in the school.

70 Jens Høyrup



REVERBERATIONS

After the discovery of the Babylonian second-degree algebraic in the late
1920s, Neugebauer proposed that the geometry of Elements II (characterized
by Zeuthen as “geometric algebra” already in the 1880s) should be under-
stood as a geometrical translation of the supposedly numerical algebra of the
Babylonians, prompted by the discovery of irrationality and the ensuing
“foundation crisis” of Greek mathematics.

The foundation crisis turned out to be a projection of the 1920s on Greek
antiquity, and even the translation theory proved problematic as it was
formulated. Elements II solve no problems, at most they can be said to
prove algebraic identities of a kind that Babylonian algebra seemed to be
based on. Worse was the disappearance of the main stock of Babylonian
algebra more than a millennium before the creation of Greek geometry and
the failing evidence that any Greek mathematician knew about Babylonian
mathematics.
The geometric reinterpretation of the Babylonian technique transforms

the question: Euclid’s diagrams coincide with those of which the
Babylonians had made use (II.6 thus with the procedure shown above),
and his proofs may be said to provide a “critique” of the Babylonian
procedures – verification of their legitimacy and investigation of the condi-
tions under which they are valid. But it does not invalidate the second
objection to Neugebauer’s thesis.
Comparative analysis of the Babylonian material and a number of later

sources –mostly treatises on practical geometry containing supra-utilitarian
material, many from the Islamic Middle Ages but others belonging to
classical antiquity or to the stock of Italian borrowings from lost Arabic
sources – now allows us to delineate a new scenario.14

The original stock of quasi-algebraic surveyors’ riddles can be said with fair
certainty to have encompassed at least the following problems on a single
square (area A, side s, “all four sides” 4s; Greek letters indicate given numbers):

A� s ¼ α == Aþ4s ¼ β == A¼4s:

On rectangles (length l, widthw, all sides 4s, diagonal d) the following can be
identified:

14 The details of the scenario and fairly full arguments from the sources are found in Jens Høyrup,
“On a Collection of Geometrical Riddles and Their Role in the Shaping of Four to Six ‘Algebras’,”
Science in Context 14 (2001), 85–131. Supplementarymaterial is in “Hero, Ps.-Hero, andNear Eastern
Practical Geometry. An Investigation ofMetrica,Geometrica, and other Treatises,” in Klaus Döring,
Bernhard Herzhoff, and Georg Wöhrle (eds.), Antike Naturwissenschaft und ihre Rezeption, Band 7
(Trier: Wissenschaftlicher Verlag Trier, 1997), pp. 67–93. The changing and incoherent uses of the
notion of “geometric algebra” since Zeuthen by friends and foes are analyzed in Jens Høyrup,
“What is ‘Geometric Algebra’, and What Has It Been in Historiography?” AIMS Mathematics 2
(2017), 128–60.
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A ¼ α; l � w ¼ β == Aþ ðl � wÞ ¼ α; l � w ¼ β == A ¼ α; d ¼ β;

and seemingly also
A ¼ l þ w==A¼4s:

On two squares, finally,

A1 þ A2 ¼ α; s1 � s2 ¼ β == A1–A2 ¼ α; s1 � s2 ¼ β:

The lay tradition – whose geographical extension may have outranged
Mesopotamia – survived the collapse of the Old Babylonian scribe school,
and conserved its stock of riddles. It may have borrowed from the scribe
school, but only marginally, and never anything “algebraic” of a more
advanced character than the original riddles. Some of its characteristic
riddles turn up in Diophantus’ Arithmetica I, some are found in pseudo-
Heronian or agrimensor treatises, and some are referred to in the
Theologoumena arithmeticae – enough, indeed, to demonstrate that Greek
theoretical geometry would have had no difficulty in running into the
tradition (whether during contacts with Syro-Phoenician practitioners or
in Egypt, to where it may have been brought by military surveyors or tax
collectors in the wake of the Assyrian or the Persian conquests). It seems that
some geometers did so before Theodoros’ time (thus probably in the fifth
century) and submitted the old procedures to a “critique” whose results turn
up in Elements II, propositions 1–10; all of these, indeed, are related to the
basic riddles or to the formulas ☐ðR � rÞ ¼ ☐ðRÞ þ ☐ðrÞ � 2⊏⊐ðR; rÞ,
apparently known already in the Old Akkadian school. In contrast, nothing
in Euclid relates to the particular creations of the Old Babylonian scribe
school: ample and intricate use of coefficients; the treatment of biquadratics
and other higher-order problems; and the scaling of non-normalized pro-
blems (ElementsVI.28–9 is likely to represent an independent though similar
generalization).
In the Islamic world, the tradition and at least some of the riddles are still

encountered around 1200 ce. In the ninth century ce, the cut-and-paste
procedures were borrowed by al-Khwārizmī for his demonstrations of the
algorithms of al-jabr, and thus were also adopted as a core constituent of
Latin algebra.

References to the old tradition are also found inMahāvīrā’s ninth-century
Gaṇita-Sāra-Sangraha. Since they do not correspond to what occurs in
Islamic sources, Mahāvīrā is likely to have drawn on the Jaina tradition.
He is thus a witness of a possible link between theNear Eastern tradition and
Indian medieval algebra – a link which is invisible in the numerical algebra
of A̅ryabhata and Brahmagupta. If not directly, then at least through this lay
tradition, the Babylonian algebra discovered by Neugebauer and his colla-
borators thus had even wider repercussions than he ever dared imagine in
print.
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